Please rotate your device for an optimized experience.

KLH 3s 100 V2 TT

KLH 3s 100 V2 TT is a cross-laminated solid wood panel from KLH Massivholz GmbH, also known as KLH® - CLT. The panel has 3 layers and has a total thickness of 100mm. As a TT element, it is usually used as a wall in solid timber construction. The crosswise arrangement of the longitudinal and transverse lamellas minimizes the swelling and shrinkage of the wood in the panel plane. At the same time, this increases the static load-bearing capacity and dimensional stability in the panel plane. Depending on the thickness and the presence of cladding, fire protection requirements of 30, 60, 90 and 120 minutes are met.

Graphical representation

KLH 3s 100 V2 TT

KLH 3s 100 V2 TT is a cross-laminated solid wood panel from KLH Massivholz GmbH, also known as KLH® - CLT. The panel has 3 layers and has a total thickness of 100mm. As a TT element, it is usually used as a wall in solid timber construction. The crosswise arrangement of the longitudinal and transverse lamellas minimizes the swelling and shrinkage of the wood in the panel plane. At the same time, this increases the static load-bearing capacity and dimensional stability in the panel plane. Depending on the thickness and the presence of cladding, fire protection requirements of 30, 60, 90 and 120 minutes are met.

Stiffness and cross section properties for EDP-based analysis

12345
Stiffness Properties for the modelling of KLH-Elements as shear-flexible plate structure by means of FEM
Descriptionb = 1mUnit
XY
1
EJ
Bending stiffnessEJ9928kNm2/m
EJ - Bending stiffness [kNm2/m]
Bending stiffness
2
GJ
Torsional stiffnessGJ31.2kNm2/m
GJ - Torsional stiffness [kNm2/m]
Torsional stiffness
3
GA
Shear stiffnessGA10,50011,500kN/m
GA - Shear stiffness [kN/m]
Shear stiffness
4
EA
Extensional stiffnessEA960,000240,000kN/m
EA - Extensional stiffness [kN/m]
Extensional stiffness
5
GA2
In-plane shear stiffnessGA231,400kN/m
GA2 - In-plane shear stiffness [kN/m]
In-plane shear stiffness
12345
Stiffness Properties for the modelling of KLH-Elements as orthotropic plate by means of FEM
Descriptionb = 1mUnit
XY
1
tred
Reduced plate depthtred10020mm
tred - Reduced plate depth [mm]
Reduced plate depth
2
Gmean
G-Modulus for plate action1, 2Gmean126N/mm2
Gmean - G-Modulus for plate action1, 2 [N/mm2]
G-Modulus for plate action1, 2
3
Emean
E-Modulus (MOE) for plate actionEmean12,000N/mm2
Emean - E-Modulus (MOE) for plate action [N/mm2]
E-Modulus (MOE) for plate action
4
tred
Reduced membrane depthtred8020mm
tred - Reduced membrane depth [mm]
Reduced membrane depth
5
Gmean
G-Modulus for membrane action1, 3Gmean471N/mm2
Gmean - G-Modulus for membrane action1, 3 [N/mm2]
G-Modulus for membrane action1, 3
6
Emean
E-Modulus (MOE) for membrane actionEmean12,000N/mm2
Emean - E-Modulus (MOE) for membrane action [N/mm2]
E-Modulus (MOE) for membrane action
1) The shear modulus applies to the equivalent rectangular cross section and has been adapted accordingly (i.e. increased by a factor of 6/5), since the current FE programs generally do not allow any further specifications.
2) The shear modulus for the plate action specified here represents the less favourable value for the X and Y directions.
3) The shear modulus for the membrane action specified here represents the less favourable value for the X and Y directions.
12345
Stiffness Properties for the modelling of KLH-Elements as grillage using lattice frame software (shear-flexible)
Descriptionb = 1mUnit
XY
1
bred
Equivalent beam widthbred9921,000mm
bred - Equivalent beam width [mm]
Equivalent beam width
2
h
Beam depthh10020mm
h - Beam depth [mm]
Beam depth
3
Gmean
G-Modulus for plate action1, 2Gmean127690N/mm2
Gmean - G-Modulus for plate action1, 2 [N/mm2]
G-Modulus for plate action1, 2
4
Emean
E-Modulus (MOE) for plate actionEmean12,000N/mm2
Emean - E-Modulus (MOE) for plate action [N/mm2]
E-Modulus (MOE) for plate action
5
bred
Equivalent beam widthbred8020mm
bred - Equivalent beam width [mm]
Equivalent beam width
6
Gmean
G-Modulus for membrane action1, 3Gmean4711,884N/mm2
Gmean - G-Modulus for membrane action1, 3 [N/mm2]
G-Modulus for membrane action1, 3
7
Emean
E-Modulus (MOE) for membrane actionEmean12,000N/mm2
Emean - E-Modulus (MOE) for membrane action [N/mm2]
E-Modulus (MOE) for membrane action

Cross section properties for manual calculation

12345
Cross-section values
Descriptionb = 1mUnit
XY
1
Jnet,t
Net moment of inertia (tension side)Jnet,t8,26767cm4
Jnet,t - Net moment of inertia (tension side) [cm4]
Net moment of inertia (tension side)
2
Jnet,c
Net moment of inertia (compression side)Jnet,c8,26767cm4
Jnet,c - Net moment of inertia (compression side) [cm4]
Net moment of inertia (compression side)
3
Anet
Net cross-sectional areaAnet800200cm2
Anet - Net cross-sectional area [cm2]
Net cross-sectional area
4
Aeff
Effective cross-sectional areaAeff1,000200cm2
Aeff - Effective cross-sectional area [cm2]
Effective cross-sectional area
5
inet
Net radius of gyrationinet326mm
inet - Net radius of gyration [mm]
Net radius of gyration
6
es,Ra1
Distance between center of gravity and edge 1es,Ra15010mm
es,Ra1 - Distance between center of gravity and edge 1 [mm]
Distance between center of gravity and edge 1
7
es,Ra2
Distance between center of gravity and edge 2es,Ra25010mm
es,Ra2 - Distance between center of gravity and edge 2 [mm]
Distance between center of gravity and edge 2
8
Wnet,Ra1
Section Modulus for edge 1Wnet,Ra11,65367cm3
Wnet,Ra1 - Section Modulus for edge 1 [cm3]
Section Modulus for edge 1
9
Wnet,Ra2
Section Modulus for edge 2Wnet,Ra21,65367cm3
Wnet,Ra2 - Section Modulus for edge 2 [cm3]
Section Modulus for edge 2

Membrane actions (Tab. A)

12345
Characteristic load-carrying capacity for In-plane actions
Descriptionb = 1mUnit
XY
1
Nt,0,Rk
Tensile force – Constant distributionNt,0,Rk1,320300kN
Nt,0,Rk - Tensile force – Constant distribution [kN]
Tensile force – Constant distribution
2
Nt,0,m,Rk
Tensile force – Variable distributionNt,0,m,Rk1,920430kN
Nt,0,m,Rk - Tensile force – Variable distribution [kN]
Tensile force – Variable distribution
3
Nc,0,Rk
Compressive force – Without column stability problemNc,0,Rk1,920430kN
Nc,0,Rk - Compressive force – Without column stability problem [kN]
Compressive force – Without column stability problem
4
Nc,loc,Rk
Compressive force – Narrow side – Local load introductionNc,loc,Rk2,880720kN
Nc,loc,Rk - Compressive force – Narrow side – Local load introduction [kN]
Compressive force – Narrow side – Local load introduction
5
Nc,90,Rk
Compressive force – Narrow side – Compression perpendicularNc,90,Rk594119kN
Nc,90,Rk - Compressive force – Narrow side – Compression perpendicular [kN]
Compressive force – Narrow side – Compression perpendicular
6
Nc,2.73,Rk
Compressive force – Column stability – Buckling lenght: 2.73 mNc,2.73,Rk8829kN
Nc,2.73,Rk - Compressive force – Column stability – Buckling lenght: 2.73 m [kN]
Compressive force – Column stability – Buckling lenght: 2.73 m
7
Nc,2.95,Rk
Compressive force – Column stability – Buckling lenght: 2.95 mNc,2.95,Rk7777kN
Nc,2.95,Rk - Compressive force – Column stability – Buckling lenght: 2.95 m [kN]
Compressive force – Column stability – Buckling lenght: 2.95 m
8
Nc,3.50,Rk
Compressive force – Column stability – Buckling lenght: 3.50 mNc,3.50,Rk5805kN
Nc,3.50,Rk - Compressive force – Column stability – Buckling lenght: 3.50 m [kN]
Compressive force – Column stability – Buckling lenght: 3.50 m
9
Nc,5.00,Rk
Compressive force – Column stability – Buckling lenght: 5.00 mNc,5.00,Rk-3kN
Nc,5.00,Rk - Compressive force – Column stability – Buckling lenght: 5.00 m [kN]
Compressive force – Column stability – Buckling lenght: 5.00 m
10
Nxy,KF,Rk
In-plane shear force – General actionNxy,KF,Rk180kN
Nxy,KF,Rk - In-plane shear force – General action [kN]
In-plane shear force – General action
11
VTR,Rk
In-plane shear force – Beam-like elements (H = 1 m)VTR,Rk245131kN
VTR,Rk - In-plane shear force – Beam-like elements (H = 1 m) [kN]
In-plane shear force – Beam-like elements (H = 1 m)

Plate actions (Tab. B)

12345
Characteristic load-carrying capacity for out-of-plane actions
Descriptionb = 1mUnit
XY
1
Mc,Rk
Bending moment – Compression edgeMc,Rk3,968160kNcm
Mc,Rk - Bending moment – Compression edge [kNcm]
Bending moment – Compression edge
2
Mt,Rk
Bending moment – Tension edgeMt,Rk3,968160kNcm
Mt,Rk - Bending moment – Tension edge [kNcm]
Bending moment – Tension edge
3
dMEL,Rk
Reduction of bending moment – due to single load (SL)dMEL,Rk-kNcm/kN
dMEL,Rk - Reduction of bending moment – due to single load (SL) [kNcm/kN]
Reduction of bending moment – due to single load (SL)
4
VRk
Shear forceVRk82.6736kN
VRk - Shear force [kN]
Shear force
KLHdesigner data+